709 research outputs found

    A process model for air bending

    Get PDF
    A so called `three-section¿ model for air bending is presented. It is assumed that a state of plane strain exists and that Bernoulli's law is valid. The material behaviour is described with Swift's equation, and the change of Young's modulus under deformation is addressed. As compared with other models, the model described in the paper is capable of generating information such as required punch displacement and the unfolded blank size, very accurately. With in-process measurement of the spring-back angle, the punch displacement can be calculated even more accurately

    Persistent Cohomology and Circular Coordinates

    Full text link
    Nonlinear dimensionality reduction (NLDR) algorithms such as Isomap, LLE and Laplacian Eigenmaps address the problem of representing high-dimensional nonlinear data in terms of low-dimensional coordinates which represent the intrinsic structure of the data. This paradigm incorporates the assumption that real-valued coordinates provide a rich enough class of functions to represent the data faithfully and efficiently. On the other hand, there are simple structures which challenge this assumption: the circle, for example, is one-dimensional but its faithful representation requires two real coordinates. In this work, we present a strategy for constructing circle-valued functions on a statistical data set. We develop a machinery of persistent cohomology to identify candidates for significant circle-structures in the data, and we use harmonic smoothing and integration to obtain the circle-valued coordinate functions themselves. We suggest that this enriched class of coordinate functions permits a precise NLDR analysis of a broader range of realistic data sets.Comment: 10 pages, 7 figures. To appear in the proceedings of the ACM Symposium on Computational Geometry 200

    Tolerancing and Sheet Bending in Small Batch Part Manufacturing

    Get PDF
    Tolerances indicate geometrical limits between which a component is expected to perform its function adequately. They are used for instance for set-up selection in process planning and for inspection. Tolerances must be accounted for in sequencing and positioning procedures for bending of sheet metal parts. In bending, the shape of a part changes not only locally, but globally as well. Therefore, sheet metal part manufacturing presents some specific problems as regards reasoning about tolerances. The paper focuses on the interpretation and conversion of tolerances as part of a sequencing procedure for bending to be used in an integrated CAPP system

    Metrics for generalized persistence modules

    Full text link
    We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverse-image persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence and their stability can be described in this framework. This includes the classical case of sublevelset persistent homology. We introduce a distinction between `soft' and `hard' stability theorems. While our treatment is direct and elementary, the approach can be explained abstractly in terms of monoidal functors.Comment: Final version; no changes from previous version. Published online Oct 2014 in Foundations of Computational Mathematics. Print version to appea

    Persistence stability for geometric complexes

    Full text link
    In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, Cech and witness complexes) built on top of precompact spaces. Using recent developments in the theory of topological persistence we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov--Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and Cech complexes built on top of compact spaces.Comment: We include a discussion of ambient Cech complexes and a new class of examples called Dowker complexe
    • …
    corecore